
Multi Threading and
Synchronization

ECE 469, Mar 11

Aravind Machiry

1

Web Server Example

● How does a web server handle 1 request?

● A web server needs to handle many concurrent requests

● Solution 1:
● Have the parent process fork as many processes as needed

● Processes communicate with each other via inter-process
communication

2

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Parent

EMPTY

3

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

EMPTY EMPTY

4

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

EMPTY EMPTY

Fork() creates new process by copying memory
space
Process creates a new PRIVATE memory space

5

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

EMPTY EMPTY

Fork() creates new process by copying memory
space
Process creates a new PRIVATE memory space

6

Multiple Processes

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

fork()

Parent Child

Not
sharing

variables

EMPTY EMPTY

Fork() creates new process by copying memory
space
Process creates a new PRIVATE memory space

7

How do Process communicate?
● At process creation time

● Parents get one chance to pass everything at fork()

● OS provides generic mechanisms to communicate
● Shared Memory: multiple processes can read/write same physical portion of memory;

implicit channel
● System call to declare shared region

● No OS mediation required once memory is mapped

● Message Passing: explicit communication channel provided through send()/receive()
system calls
● A system call is required

8

How do Process communicate?

● IPC is, in general, expensive due to the need for system calls
● Although many OSes have various forms of lightweight IPC

9

The Soul of a Process

● But all the processes in the web-server are cooperating!
● They all share the same code and data (address space)

● They all share the same privileges

● They all share the same resources (files, sockets, etc.)

● What don’t they share?
● Each has its own execution state: PC, SP, and registers

10

The Soul of a Process

● Key idea: Why don’t we separate the concept of a process
from its execution state?
● Process: address space, privileges, resources, etc.

● Execution state: PC, SP, registers

● Exec state also called thread of control, or thread

11

Threads

● Separate the concepts of a “thread of control” (PC, SP,
registers) from the rest of the process (address space,
resources, accounting, etc.)

● Modern OSes support two entities:
● the task (process), which defines an address space, a resource

container, accounting info

● the thread (lightweight process), which defines a single
sequential execution stream within a task (process)

12

Threads vs. Process

● There can be several threads in a single address space

● Threads are the unit of scheduling; tasks are containers
(address space, other shared resources) in which threads
execute

13

Single threaded v/s multithreaded

14

● A.K.A User Environment (JOS)

● Process management info
○ State (ready, running, blocked)
○ PC & Registers, parents, etc
○ CPU scheduling info (priorities, etc.)

● Memory management info
○ Segments, page table, stats, etc
○ Code, data, heap, execution stack

● I/O and file management
○ Communication ports, directories, file descriptors, etc

What differs in threads of a process?

15

● A.K.A User Environment (JOS)

● Process management info
○ State (ready, running, blocked)
○ PC & Registers, parents, etc
○ CPU scheduling info (priorities, etc.)

● Memory management info
○ Segments, page table, stats, etc
○ Code, data, heap, execution stack

● I/O and file management
○ Communication ports, directories, file descriptors, etc

What differs in threads of a process?

16

Thread Control Block

● Shared information
● Process info: parent process

● Memory: code/data segments, page table, and stats

● I/O and file: comm ports, open file descriptors

● Private state
● State (ready, running and blocked)

● PC, Registers

● Execution stack

17

Threads

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

EMPTY

18

Threads

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2
EMPTY EMPTY

19

Threads

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2 Add a new
stack!

EMPTY EMPTY

20

Threads

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2 Add a new
stack!

EMPTY EMPTY

21

Threads

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2 Add a new
stack!

Adding
value..

EMPTY EMPTY

22

Threads

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free…

Global
int counter;

Program

USTACK 2 Add a new
stack!

Adding
value..

The same
variable..

EMPTY EMPTY

23

Programming with Threads

● Flexible, but error-prone, since there no protection
between threads
● In C/C++,

● automatic variables are private to each thread

● global variables and dynamically allocated memory (malloc) are shared

● Need synchronization!

24

The need for synchronization!

● Cooperating processes may share data via
● shared address space (code, data, heap) by using threads

● Files

● (Sending messages)

● What can happen if processes try to access shared data
(address) concurrently?
● Sharing bank account with sibling:

At 3pm: If (balance > $10) withdraw $10

● How hard is the solution?

25

“Too much milk” Problem

● How to put in a locking mechanism?

Person A Person B

1. Look in fridge: out of milk
2. Leave for Walmart
5. Arrive at Walmart
6. Buy milk
7. Arrive home

3. Look in fridge: out of milk
4. Leave for Walmart
8. Arrive at Walmart
9. Buy milk
10. Arrive home

26

Possible Solution 1

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

Person A Person B

27

Will this work?

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

Person A Person B

28

Will this work?

● Process can get context switched after checking milk
and note, but before leaving note

3.if (noMilk) {
 4.if (noNote) {
 6.leave note;
 buy milk;
 remove note;
 }
}

1.if (noMilk) {
 2.if (noNote) {
 5.leave note;
 buy milk;
 remove note;
 }
}

Person A Person B

29

Why does this work for humans?

● Human can perform test (look for other person
& milk) and set (leave note) at the same time.

30

Possible Solution 2

leave noteA
if (no noteB) {
 if (noMilk) {
 buy milk
 }
}
remove noteA

leave noteB
if (no noteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

Person A Person B

31

Will this work?

leave noteA
if (no noteB) {
 if (noMilk) {
 buy milk
 }
}
remove noteA

leave noteB
if (no noteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

Person A Person B

32

Will this work?

leave noteA
if (no noteB) {
 if (noMilk) {
 buy milk
 }
}
remove noteA

leave noteB
if (no noteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

Person A Person B

● We may not have Milk: Both process can leave note and skip
buying milk

33

Possible Solution 3

Process A

leave noteA
while (noteB)
 do nothing;
if (noMilk)
 buy milk;
remove noteA

Process B

leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

34

Process A

leave noteA
while (noteB)
 do nothing;
if (noMilk)
 buy milk;
remove noteA

Process B

leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

Will this work?

35

Works, but complicated!

Process A
leave noteA
while (noteB)
 do nothing;
if (noMilk)
 buy milk;
remove noteA

Process B
leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

● A’s code is different from B’s

● busy waiting is a waste

36

How can we solve this?

● Root cause: Data Race

• A thread’s execution result could be inconsistent if other
threads intervene its execution…

• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

37

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

38

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

39

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

40

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

41

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

42

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

43

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

44

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

counter = 2

45

Shared variable: No race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

counter = 2

OK, consistent!

46

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

47

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

48

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

49

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

edx = 1

50

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

edx = 1

eax = 0

51

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

edx = 1

eax = 0

eax = 1

52

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

edx = 1

eax = 0

eax = 1

counter = 1

53

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

edx = 1

eax = 0

eax = 1

counter = 1

counter = 1

54

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

Overwrite, inconsistent

55

Shared variable: Data race
Thread 1

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume counter = 0 at start,
and value = 1;

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

Overwrite, inconsistent

This load must run after
Storing of a counter..

56

How can we prevent data races?

• What we need?
• Exclusive access to counter (shared

variable)

Thread 1

edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

57

How can we prevent data races?

● Critical section – a section of code, or collection of
operations, in which only one process/thread shall be
executing at a given time

● Mutual exclusion (Mutex) - mechanisms that ensure
that only one person or process/thread is doing
certain things at one time (others are excluded)

58

How can we prevent data races?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

59

How can we prevent data races?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to
counter

60

Does mutex renders threading useless?
Program

Critical Section

Critical Section

Critical Section

Critical Section

Critical Section

61

Does mutex renders threading useless?
Thread 1

Critical Section

Thread 2

Exclusion

Critical Section

Critical Section

Exclusion

Critical Section

Exclusion

Critical Section

Exclusion

Exclusion

Program

Critical Section

Critical Section

Critical Section

Critical Section

Critical Section

62

Does mutex renders threading useless?

Thread 1

Critical Section

Thread 2

Exclusion

Critical Section

Exclusion

Parallel Job

Parallel Job

Parallel Job
Parallel Job

Critical Section

Parallel Job

Parallel Job

Critical Section

Parallel Job

Parallel Job

63

Mutex Considerations

• Mutex can synchronize multiple threads and yield consistent result
• No read before previous thread store the shared data

• Making the entire program as critical section is meaningless
• Running time will be the same as single-threaded execution

• Apply critical section as short as possible to maximize benefit of
having concurrency

• Non-critical sections will run concurrently!

