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Web Server Example

● How does a web server handle 1 request?

● A web server needs to handle many concurrent requests 

● Solution 1: 
● Have the parent process fork as many processes as needed

● Processes communicate with each other via inter-process 
communication 
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How do Process communicate?
● At process creation time

● Parents get one chance to pass everything at fork() 

● OS provides generic mechanisms to communicate 
● Shared Memory: multiple processes can read/write same physical portion of memory; 

implicit channel 
● System call to declare shared region 

● No OS mediation required once memory is mapped 

● Message Passing: explicit communication channel provided through send()/receive() 
system calls 
● A system call is required 
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How do Process communicate?

● IPC is, in general, expensive due to the need for system calls 
● Although many OSes have various forms of lightweight IPC
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The Soul of a Process

● But all the processes in the web-server are cooperating!
● They all share the same code and data (address space) 

● They all share the same privileges 

● They all share the same resources (files, sockets, etc.) 

● What don’t they share? 
● Each has its own execution state: PC, SP, and registers 
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The Soul of a Process

● Key idea: Why don’t we separate the concept of a process 
from its execution state? 
● Process: address space, privileges, resources, etc. 

● Execution state: PC, SP, registers 

● Exec state also called thread of control, or thread
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Threads

● Separate the concepts of a “thread of control” (PC, SP, 
registers) from the rest of the process (address space, 
resources, accounting, etc.)

● Modern OSes support two entities:
● the task (process), which defines an address space, a resource 

container, accounting info

● the thread (lightweight process), which defines a single 
sequential execution stream within a task (process)
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Threads vs. Process

● There can be several threads in a single address space

● Threads are the unit of scheduling; tasks are containers 
(address space, other shared resources) in which threads 
execute
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Single threaded v/s multithreaded
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● A.K.A User Environment (JOS)

● Process management info
○ State (ready, running, blocked)
○ PC & Registers, parents, etc
○ CPU scheduling info (priorities, etc.)

● Memory management info
○ Segments, page table, stats, etc
○ Code, data, heap, execution stack

● I/O and file management
○ Communication ports, directories, file descriptors, etc

What differs in threads of a process?
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Thread Control Block

● Shared information
● Process info: parent process

● Memory: code/data segments, page table, and stats

● I/O and file: comm ports, open file descriptors

● Private state
● State (ready, running and blocked)

● PC, Registers

● Execution stack
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Programming with Threads

● Flexible, but error-prone, since there no protection 
between threads
● In C/C++, 

● automatic variables are private to each thread

● global variables and dynamically allocated memory (malloc) are shared

● Need synchronization!
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The need for synchronization!

● Cooperating processes may share data via
● shared address space (code, data, heap) by using threads 

● Files

● (Sending messages)

● What can happen if processes try to access shared data 
(address) concurrently?
● Sharing bank account with sibling:

At 3pm: If (balance > $10) withdraw $10

● How hard is the solution?
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“Too much milk” Problem

● How to put in a locking mechanism?

Person A Person B

1. Look in fridge: out of milk
2. Leave for Walmart
5. Arrive at Walmart
6. Buy milk
7. Arrive home

3. Look in fridge: out of milk
4. Leave for Walmart
8. Arrive at Walmart
9. Buy milk
10. Arrive home
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Possible Solution 1

if ( noMilk ) {
  if (noNote) {
    leave note;
    buy milk;
    remove note;
  }
}

if ( noMilk ) {
  if (noNote) {
    leave note;
    buy milk;
    remove note;
  }
}

Person A Person B
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Will this work?
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Will this work?

● Process can get context switched after checking milk 
and note, but before leaving note

3.if ( noMilk ) {
  4.if (noNote) {
    6.leave note;
    buy milk;
    remove note;
  }
}

1.if ( noMilk ) {
  2.if (noNote) {
    5.leave note;
    buy milk;
    remove note;
  }
}

Person A Person B
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Why does this work for humans?

● Human can perform test (look for other person 
& milk) and set (leave note) at the same time.
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Possible Solution 2
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Will this work?

leave noteA
if (no noteB) {
  if (noMilk) {
    buy milk
  }
}
remove noteA

leave noteB
if (no noteA) {
  if (noMilk) {
    buy milk
  }
}
remove noteB

Person A Person B

● We may not have Milk: Both process can leave note and skip 
buying milk
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Possible Solution 3

Process A

leave noteA
while (noteB)
  do nothing;
if (noMilk) 
  buy milk;
remove noteA

Process B

leave noteB
if (noNoteA) {
  if (noMilk) {
    buy milk
  }
}
remove noteB
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Process A
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Works, but complicated!

Process A
leave noteA
while (noteB)
  do nothing;
if (noMilk) 
  buy milk;
remove noteA

Process B
leave noteB
if (noNoteA) {
  if (noMilk) {
    buy milk
  }
}
remove noteB

● A’s code is different from B’s

● busy waiting is a waste
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How can we solve this?

● Root cause: Data Race

• A thread’s execution result could be inconsistent if other 
threads intervene its execution… 

• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
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Shared variable: No race
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Shared variable: Data race
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Shared variable: Data race
Thread 1
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This load must run after
Storing of a counter.. 
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How can we prevent data races?

• What we need?
• Exclusive access to counter (shared 

variable)

Thread 1

edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

No access to 
counter
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How can we prevent data races?

● Critical section – a section of code, or collection of 
operations, in which only one process/thread shall be 
executing at a given time

● Mutual exclusion (Mutex) - mechanisms that ensure 
that only one person or process/thread is doing 
certain things at one time (others are excluded)
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How can we prevent data races?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to 
counter
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Does mutex renders threading useless?
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Critical Section

Critical Section

Critical Section
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Does mutex renders threading useless?
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Mutex Considerations

• Mutex can synchronize multiple threads and yield consistent result
• No read before previous thread store the shared data

• Making the entire program as critical section is meaningless
• Running time will be the same as single-threaded execution

• Apply critical section as short as possible to maximize benefit of 
having concurrency

• Non-critical sections will run concurrently!


