Multi Threading and
Synchronization

ECE 469, Mar 11

Aravind Machiry

Web Server Example

« How does a web server handle 1 request?

o A web server needs to handle many concurrent requests

o Solution 1:
Have the parent process fork as many processes as needed

Processes communicate with each other via inter-process
communication

Multiple Processes

Parent

Kernel

UXSTACK

EMPTY
USTACK
EMPTY

Free...

Multiple Processes
Parent Child

Kernel Kernel

UXSTACK UXSTACK

EMPTY EMPTY

USTACK USTACK
EMPTY EMPTY

Free... Free...

(X X
Multiple Processes 1
o
Parent Child e
Kernel Kernel Fork() creates new process by copying memory

space
Process creates a new PRIVATE memory space

UXSTACK UXSTACK

EMPTY EMPTY

USTACK USTACK
EMPTY EMPTY

Free... Free...

'YX X
Multiple Processes 3
3
Parent Child e
Kernel Kernel Fork() creates new process by copying memory

space

P #include <stdio.h>
#include <unistd.h>

int counter;
volatile int value = 1;

UXSTACK UXSTACK
EMPTY EMPTY
USTACK USTACK

EMPTY EMPTY

void countup() {
for(int 1=0; 1<1000000; ++i) {
counter += value;
}

}

int main() {
pid_t pid = fork();
countup();
printf("%s: ", pid ? "Parent" : " Child", counter);

Free... Free...

'YX X
Multiple Processes 3
3
Parent Child <
Kernel Kernel Fork() creates new process by copying memory

space

P #include <stdio.h>
#include <unistd.h>

int counter;
volatile int value = 1;

UXSTACK UXSTACK

EMPTY EMPTY void countup() {
for(int 1=0; 1<1000000; ++1i
USTACK USTACK T s BB R
EMPTY EMPTY }
} Parent: 1000000
int main() { Child: 1000000
Free... Free... pid_t pid = fork();
countup();
printf("%s: ", pid ? "Parent" : " Child", counter);
Not
sharing
variables

+-—>
int counter: int counter:

How do Process communicate?

o At process creation time

Parents get one chance to pass everything at fork()

o OS provides generic mechanisms to communicate
Shared Memory: multiple processes can read/write same physical portion of memory;
implicit channel

System call to declare shared region
No OS mediation required once memory is mapped

Message Passing: explicit communication channel provided through send()/receive()
system calls
A system call is required

How do Process communicate?

e IPCis, in general, expensive due to the need for system cal

Although many OSes have various forms of lightweight IPC

s

The Soul of a Process

o But all the processes in the web-server are cooperating!
« They all share the same code and data (address space)
« They all share the same privileges
« They all share the same resources (files, sockets, etc.)

e What don’t they share?
« Each has its own execution state: PC, SP, and registers

The Soul of a Process

o Keyidea: Why don’t we separate the concept of a process
from its execution state?
Process: address space, privileges, resources, etc.
Execution state: PC, SP, registers

o Exec state also called thread of control, or thread

10

Threads

o Separate the concepts of a “thread of control” (PC, SP,
registers) from the rest of the process (address space,
resources, accounting, etc.)

e Modern OSes support two entities:

the task (process), which defines an address space, a resource
container, accounting info

the thread (lightweight process), which defines a single

sequential execution stream within a task (process)
11

Threads vs. Process

e There can be several threads in a single address space

e Threads are the unit of scheduling; tasks are containers
(address space, other shared resources) in which threads
execute

12

Single threaded v/s multithreaded

code data files
registers stack
thread —» ;

code data files
registers registers registers
stack stack stack

single-threaded

:

:

;._

— thread

multithreaded

13

What differs in threads of a process?

e A.K.A User Environment (JOS)

® Process management info
o State (ready, running, blocked)
o PC & Registers, parents, etc
o CPU scheduling info (priorities, etc.)

® Memory management info
o Segments, page table, stats, etc
Code, data, heap, execution stack

e 1/0 and file management
o Communication ports, directories, file descriptors, etc

14

What differs in threads of a process?

e A.K.A User Environment (JOS)

® Process management info

@)
©)

o CPU scheduling info (priorities, etc.)

State (ready, running, blocked)
PC & Registers, parents, etc

e Memory management info

@)

Segments, page table, stats, etc

Code, data, heap, |execution stack

e 1/0 and file management

o Communication ports, directories, file descriptors, etc

15

Thread Control Block

Shared information

» Process info: parent process

« Memory: code/data segments, page table, and stats
» 1/0 and file: comm ports, open file descriptors

Private state

» State (ready, running and blocked)
» PC, Registers

» Execution stack

16

Threads

Kernel

UXSTACK
EMPTY
USTACK
EMPTY

Free...

17

Threads

Kernel Kernel |

F————

I Others

UXSTACK I uxstack |
EMPTY
USTACK
EMPTY

USTACK

pthread_create() EMPTY
USTACK 2

Free...

18

'YX)
e®eoo
e®oo
Threads °2°
e
L | | L] | L] I
Kernel I Kernel |
F " T " I
I Others I
UXSTACK I uxstack |
EMPTY
USTACK USTACK
EMPTY pthread_create() EMPTY
LOTIE Addanew
Free... | Free... I stack!
' |
| |
! Heap !
—
=—&br —1
i_ Jot counter.
Program

Threads

Kernel

UXSTACK

EMPTY
USTACK
EMPTY

Free...

pthread_create()

|
I Kernel |
F " T "
I Others

|
I uxstack |
|

r————

I USTACK |

EMPTY
USTACK 2

Free...

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>

int counter;
volatile int value = 1;

void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1i) {
counter += value;

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

main() {
pthread_t thread;

pthread_create(&thread, NULL, countup, NULL);
countup((void*) 1);
pthread_join(thread, NULL);

< Add anew

stack!

20

Threads

Kernel

UXSTACK

EMPTY
USTACK
EMPTY

Free...

pthread_create()

|
I Kernel |
F " T "
I Others

|
I uxstack |
|

r————

I USTACK |

EMPTY
USTACK 2

Free...

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>

int counter;
volatile int value = 1;

void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1i) {
counter += value;

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

main() {
pthread_t thread;

pthread_create(&thr2ad, NULL, countup, NULL);
countup((void*) 1)j
pthread_join(thregd, NULL);

< Add anew

stack!
Adding
value..

21

Threads

Kernel

UXSTACK
EMPTY
USTACK
EMPTY

Free...

pthread_create()

The same

|
I Kernel |
F " T "
I Others

|
I uxstack |
|

r————

I USTACK |

EMPTY
USTACK 2

| Free... I
! |
L L
! Heap !
= —coer —1
L A0f SQUDLCTL .I
Program

L____

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>

int counter;
volatile int value = 1;

void * countup(void *arg) {
for(int 1=0; 1<1000000; ++1i) {
counter += value;

printf("%s: %d\n", arg ? "Parent" : " Child", counter)

main() {
pthread_t thread;

pthread_create(&thr2ad, NULL, countup, NULL);
countup((void*) 1)j
pthread_join(thregd, NULL);

< Add anew

stack!
Adding
value..

22

Programming with Threads

o Flexible, but error-prone, since there no protection
between threads
In C/C++,

automatic variables are private to each thread
global variables and dynamically allocated memory (malloc) are shared

e Need synchronization!

23

The need for synchronization!

o Cooperating processes may share data via

shared address space (code, data, heap) by using threads
Files

(Sending messages)

o What can happen if processes try to access shared data
(address) concurrently?

o Sharing bank account with sibling:
At 3pm: If (balance > $10) withdraw S10

o How hard is the solution?

24

“Too much milk” Problem

Person A Person B
1. Look in fridge: out of milk
2. Leave for Walmart 3. Look in fridge: out of milk
5. Arrive at Walmart 4. Leave for Walmart
6. Buy milk 8. Arrive at Walmart
7. Arrive home 9. Buy milk

10. Arrive home
e How to putin a locking mechanism?

25

Possible Solution 1

Person A

if (noMilk) {
if (noNote) {
leave note;
buy milk;
remove note;

Person B

if (noMilk) {
if (noNote) {
leave note;

buy milk;
remove note;

26

Will this work?

Person A

if (noMilk) {
if (noNote) {
leave note;
buy milk;
remove note;

Person B

if (noMilk) {
if (noNote) {
leave note;

buy milk;
remove note;

27

232
Will this work? eco
[)
Person A Person B
1.if (noMilk) { 3.1f (noMilk) {
2.if (noNote) { 4.if (noNote) {
5.leave note:; 6.leave note;
buy milk; buy milk;
remove note; remove note;

} }

e Process can get context switched after checking milk

and note, but before leaving note N

Why does this work for humans?

e Human can perform (look for other person
& milk) and (leave note) at the same time.

Possible Solution 2

Person A

leave noteA
if (no noteB) {
if (noMilk) {
buy milk
}
}

remove notelA

Person B

leave noteB
if (no noteA) {
if (noMilk) {
buy milk
}
}

remove noteB

30

[X X)
[N N
Will this work? 3
Person A Person B
leave noteA leave noteB
if (no noteB) { if (no noted) {
if (noMilk) { if (noMilk) {
buy milk buy milk

} }
} }

remove notelA remove noteB

31

eoeo
Will this work? 34
(J
Person A Person B
leave noteA leave noteB
if (no noteB) { if (no noteA) {
if (noMilk) { if (noMilk) {
buy milk buy milk
} }
} }
remove noteA remove noteB

o« We may not have Milk: Both process can leave note and skip
buying milk 3

Possible Solution 3

Process A

leave noteA
while (noteB)
do nothing;
if (noMilk)
buy milk;
remove noteA

Process B

leave noteB
if (noNoted) {
if (noMilk) {
buy milk
}
}

remove noteB

33

Will this work?

Process A

leave noteA
while (noteB)
do nothing;
if (noMilk)
buy milk;
remove noteA

Process B

leave noteB
if (noNotelA) {
if (noMilk) {
buy milk
}
}

remove noteB

34

Works, but complicated!

Process A

leave notelA
while (noteB)
do nothing;

if (noMilk)

buy milk;
remove noteA

« A’s code is different from B’s
« busy waiting is a waste

Process B

leave noteB

if (noNoted) {
if (noMilk) {
buy milk
}
}

remove noteB

35

[N N)
. esco
How can we solve this? 3
[)
e Root cause: Data Race
* A thread’s execution result could be inconsistent if other
threads intervene its execution...
e counter += value
R _ . mov 0x20087b(%rip) ,%edx # 0x201010 <value>
edx value; mov 0x20087d(%rip) ,%eax # 0x201018 <counter>
* cax = counter; add %edx , %eax
ccax = edx + eax: mov %eax,0x200875(%rip) # 0x201018 <counter>
e counter = eax;

36

Shared variable: No race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

37

Shared variable: No race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

eax = edx + eax

counter = eax

edx

eax

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

38

Shared variable: No race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

eax = edx + eax

counter = eax

edx
eax

e€ax

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

39

Shared variable: No race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1
eax = 0
eax =1
counter =

1

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

40

Shared variable: No race

Thread 1
e counter += value edx = value
*edx = value; eax = counter
* eax = counter; eax = edx + eax
*eax = edx + eax; T —
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

edx =1
eax = 0
eax =1

counter

=1

edx

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

41

eees
Shared variable: No race °ss°
(J
Thread 1 Thread 2
e counter +=value edx=value [}
*edx = value; el cax = 0
* eax = counter; cax = edx + eax XV eI
*eax = edx + eax; I counter = 1
* counter = eax;
edx = 1 edx = value
* Assume counter = 0 at start, cax = 1 eax = counter
and value = 1; eax = edx + eax

counter = eax

42

eees
Shared variable: No race °ss°
(J
Thread 1 Thread 2
e counter +=value edx=value [}
*edx = wvalue; Tl cax = O
* eax = counter; cax = edx + eax XV eI
*eax = edx + eax; I counter = 1
* counter = eax;
edx = 1 edx = value
* Assume counter = 0 at start, cax = 1 eax = counter
and value = 1; eax = 2 eax = edx + eax

counter = eax

43

Shared variable: No race

Thread 1 Thread 2

e counter += value edx =value [T ESE]
e edx = value; RSl cax = 0
* eax = counter; cax = edx + eax XV eI

*eax = edx + eax; I counter = 1

e counter = eax;

edx = 1 edx = value

e Assume counter = 0 at start, eax = 1 eax = counter
and value = 1; eax = 2 eax = edx + eax

counter = 2 IR

44

eees
Shared variable: No race °ss°
@
Thread 1 Thread 2
e counter +=value edx=value [}
*edx = value; el cax = 0
* eax = counter; cax = edx + eax XV eI

*eax = edx + eax; I counter = 1

e counter = eax;

edx = 1 edx = value

e Assume counter = 0 at start, eax = 1 eax = counter
and value = 1; eax = 2 eax = edx + eax

counter = 2 IR
OK, consistent!

45

Shared variable: Data race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

|
eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

46

Shared variable: Data race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

|
eax = edx + eax

counter = eax

edx

eax

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

47

Shared variable: Data race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

|
eax = edx + eax

counter = eax

edx
eax

e€ax

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

48

Shared variable: Data race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

|
eax = edx + eax

counter = eax

edx
eax

e€ax

Thread 2

edx = 1 edx = value

eax = counter

eax = edx + eax

counter = eax

49

Shared variable: Data race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

|
eax = edx + eax

counter = eax

edx
eax

e€ax

edx

eax

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

50

Shared variable: Data race

e counter +=value
*edx = value;
* eax = counter;
*eax = edx + eax;
e counter = eax;

e Assume counter = 0 at start,
and value = 1;

Thread 1

edx = value

eax = counter

|
eax = edx + eax

counter = eax

edx
eax

e€ax

edx
eax

eax

Thread 2

edx = value

eax = counter
eax = edx + eax

counter = eax

51

eees
Shared variable: Data race °ss°
@
Thread 1 Thread 2
e counter +=value edx=value [}
*edx = value; m eax = 0
* eax = counter; m eax = 1
*eax = edx + eax; edx = 1 edx = value

e counter = eax; eax = 0 eax = counter

eax =1 eax = edx + eax

* Assume counter = 0 at start, counter = 1 [EECIIEER=E)

and value = 1;

52

eees
Shared variable: Data race °ss°
@
Thread 1 Thread 2
e counter +=value edx=value [}
*edx = value; m eax = 0
* eax = counter; m eax = 1
*eax = edx + eax; ‘ edx = 1 edx = value

e counter = eax; eax = 0 eax = counter

eax = 1 eax = edx + eax

* Assume counter = 0 at start, * counter = 1 [EECIIEER=E)

and value = 1;
R covmeer -~

53

eees
Shared variable: Data race °ss°
@
Thread 1 Thread 2
e counter +=value edx=value [}
*edx = value; m eax = 0
* eax = counter; m eax = 1
*eax = edx + eax; ‘ edx = 1 edx = value

e counter = eax; eax = 0 eax = counter

eax =1 eax = edx + eax

* Assume counter = 0 at start, counter = 1 [EECIIEER=E)
and value = 1;
el e counter = 1
Overwrite, inconsistent

54

eees
Shared variable: Data race °ss°
@
Thread 1 Thread 2
e counter +=value edx=value [}
*edx = value; m eax = 0
* eax = counter; m eax = 1
*eax = edx + eax; ‘ edx = value

* counter = eax; eax = counter

eax = edx + eax

* Assume counter = 0 at start, counter = eax
and value = 1;

Rl Counte

-"_ Oyérwrite, inconsistent

This load must run after
Storing of a counter.. 55

How can we prevent data races?

* What we need?

variable)

to counter (shared

| Thread 1 | Thread 2

edx = value
eax = counter
eax = edx + eax

counter = eax

edx = value

eax = counter

eax = edx + eax
|

counter = eax

56

How can we prevent data races?

o — a section of code, or collection of
operations, in which only one process/thread shall be
executing at a given time

e Mutual exclusion (Mutex) - mechanisms that ensure
that only one person or process/thread is doing
certain things at one time (others are excluded)

57

How can we prevent data races?

e Mutual Exclusion /

* Combine multiple instructions as a chunk
* Let only one chunk execution runs

* Block other executions

| Thread 1 |

Critical Section
edx = value

eax = counter
eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter
|

eax = edx + eax
|

counter = eax

58

How can we prevent data races?

e Mutual Exclusion /

* Combine multiple instructions as a chunk

* Let only one chunk execution runs
* Block other executions

Thread 1 I Thread 2 I

Critical Section
edx = value

eax = counter
eax = edx + eax

counter = eax

Critical Section
edx = value

eax = counter
L

eax = edx + eax
|

counter = eax

59

Does mutex renders threading useless?

Program

Critical Section

Critical Section

Critical Section

Critical Section

Critical Section

60

X
oo:o
= [X XN
Does mutex renders threading useless? 3
e
Program Thread 1 Thread 2
Critical Section Critical Section Exclusion
Critical Section Critical Section Exclusion
Critical Section Critical Section Exclusion

Critical Section Critical Section

61

Critical Section

Does mutex renders threading useless?

Parallel Job

Thread 1 Thread 2

Parallel Job

Critical Section Exclusion
Parallel Job

Critical Section

Parallel Job

Parallel Job

Critical Section

Parallel Job

Parallel Job

Parallel Job

Mutex Considerations

* Mutex can synchronize multiple threads and yield consistent result
* No read before previous thread store the shared data

* Making the entire program as critical section is meaningless
* Running time will be the same as single-threaded execution

* Apply critical section as short as possible to maximize benefit of
having concurrency

* Non-critical sections will run concurrently!

63

